空气引射加湿-膜式与压缩式联合除湿制冷系统的制作方法
【专利摘要】本实用新型涉及除湿制冷领域,尤其是空气引射加湿?膜式与压缩式联合除湿制冷系统。包括膜式除湿装置、雾化器和引射器,膜式除湿装置的两端分别设置液体入口和液体出口,液体入口和液体出口之间连接有液体通道,液体通道外表面涂覆中空纤维膜,液体入口和液体出口的内侧分别设置气体出口和气体入口,气体入口和气体出口之间通过气体通道连接;膜式除湿装置的气体入口与风机的出口连通,膜式除湿装置的气体出口与引射器的喷嘴进口连通,引射器的吸气入口与雾化器的出口连通,引射器的喷嘴出口与风机盘管的入风口连通。可使用水作为制冷工质,对空气直接冷却,提高了制冷效果;同时有效避免空气悬浮杂质对除湿溶液的污染,大大降低了系统维护成本。
【专利说明】
空气引射加湿-膜式与压缩式联合除湿制冷系统
技术领域
[0001]本实用新型涉及除湿制冷领域,尤其是一种空气引射加湿-膜式与压缩式联合除湿制冷系统。
【背景技术】
[0002]目前采用的制冷系统主要为压缩式、吸收式、吸附式以及蒸汽喷射式制冷系统。上述制冷系统的热力学基本原理均为逆卡诺循环,选取低沸点制冷剂、二元溶液等作为制冷工质,通过制冷剂蒸发/解吸的吸热过程以及冷凝/吸收的放热过程实现连续的制冷循环。被冷却工质(水、空气等)在蒸发器内与制冷工质换热降温,以此获得冷量。
[0003]然而,由于传统制冷系统获取冷量的过程在蒸发器中进行,制冷剂与被冷却工质间存在的换热温差会不可避免地产生不可逆热损失。同时,压缩式制冷系统需要专用的压缩设备,吸收式、吸附式以及蒸汽喷射式制冷系统由于换热问题存在设备体积较大、能效比低等问题,在应用上受到很大的限制。
[0004]此外,目前采用的吸收式空气除湿装置主要为氯化锂溶液除湿装置,该装置在使用中须对空气进行过滤净化,否则会对氯化锂溶液造成污染,影响装置性能。
【实用新型内容】
[0005]本实用新型的目的是针对解决现有技术中存在的上述缺陷,提出了一种空气引射加湿-膜式与压缩式联合除湿制冷系统,该系统可以使用水作为制冷工质,对空气直接冷却,提高了制冷效果;同时可有效避免空气悬浮杂质对除湿溶液的污染,大大降低了系统维护成本。
[0006]本实用新型的技术方案是:一种空气引射加湿-膜式与压缩式联合除湿制冷系统,包括风机、风机盘管和压缩制冷装置,其中,还包括膜式除湿装置、雾化器和引射器,膜式除湿装置的两端分别设置液体入口和液体出口,液体入口和液体出口之间连接有液体通道,液体通道外表面涂覆中空纤维膜,液体通道内流动有溴化锂溶液,液体入口的内侧设置气体出口,液体出口的内侧设置气体入口,气体入口和气体出口之间通过气体通道连接;
[0007]膜式除湿装置的气体入口与风机的出口连通,膜式除湿装置的气体出口与引射器的喷嘴进口连通,引射器的吸气入口与雾化器的出口连通,引射器的喷嘴出口与风机盘管的入风口连通,膜式除湿装置包括再生机构;
[0008]压缩制冷装置包括蒸发器、膨胀阀、冷凝器和压缩机,引射器的出口与风机盘管的入风口连通,风机盘管的出风口与冷凝器的冷凝翅片端口连通。
[0009]本实用新型中,所述液体通道包括数根覆膜金属丝网管,覆膜金属丝网管包括金属丝网管,金属丝网管外表面涂覆有中空纤维膜。
[0010]所述再生机构包括再生器,所述膜式除湿装置的液体出口通过溶液栗与再生器的入口连通,再生器的壁面贴有电加热片,膜式除湿装置的液体入口与再生器的出口连通。溶液栗将吸收了水蒸气后的溴化锂稀溶液不断栗入再生器,通过电加热片使溶液温度升高,水分挥发,溴化锂溶液由稀溶液变为浓溶液,不断再生,使除湿过程连续进行。
[0011]所述气体通道内间隔交错设置数个折流板。通过设置折流板,增大了湿空气与中空纤维膜的接触面积,以加强传质效果。
[0012]雾化器的入口与贮液池连通,雾化器将贮液池中的水雾化。
[0013]所述风机盘管的冷却水出口与蒸发器的冷冻水入口相连,风机盘管的冷却水入口与蒸发器的冷冻水出口相连,使水系统在风机盘管与蒸发器之间构成一套水循环,冷凝器的出水口通过膨胀阀与蒸发器的入水口连通,冷凝器的入气口通过压缩机与蒸发器的出气口连通。
[0014]本实用新型的有益效果:
[0015](i)本实用新型使用引射器作为关键制冷装置,以水作为制冷工质,水在雾化器中雾化并被吸入引射器,在引射器中持续蒸发,直接吸收空气中的热量,此种获取冷量的方式避免了壁面换热,消除了因壁面换热温差导致的不可逆热损失,避免了传统制冷系统在获取冷量时采用的壁面换热方式所带来的不可逆热损失,因此可以获得更好的制冷效果;
[0016](2)利用膜式除湿装置进行空气除湿,膜式除湿装置以溴化锂作为除湿溶液,使用覆膜金属丝网管除湿,覆膜金属丝网管能够在吸收空气中水蒸气的同时避免空气悬浮杂质对除湿溶液的污染,系统无需空气过滤净化装置,大大降低了系统维护成本。
【附图说明】
[0017]图1为空气引射加湿-膜式除湿制冷装置结构示意图;
[0018]图2为膜式除湿装置前视图;
[0019]图3为膜式除湿装置左视剖视图;
[0020]图4为膜式除湿装置俯视剖视图;
[0021 ]图5为空气处理过程焓湿图。
[0022]图中:i风机;2再生器;3雾化器;4贮液池;5溶液栗;6膜式除湿装置;7引射器;8风机盘管;9蒸发器;10膨胀阀;11冷凝器;12压缩机;13膜式除湿装置液体入口 ; 14膜式除湿装置液体出口 ; 15覆膜金属丝网管;16膜式除湿装置气体入口 ; 17膜式除湿装置气体出口 ; 18折流板。
【具体实施方式】
[0023]下面结合附图和实施例对本实用新型作进一步的说明。
[0024]如图1所示,所述的空气引射加湿-膜式除湿制冷系统包括风机1、膜式除湿装置6、引射器7、风机盘管8和压缩制冷装置。如图2至图4所示,所述膜式除湿装置6的内部设有空腔,膜式除湿装置6的两端分别设置液体入口 13和液体出口 14,液体入口 13和液体出口 14之间连接有液体通道,所述的液体通道包括多根覆膜金属丝网管15,覆膜金属丝网管15以金属丝网管为基材,金属丝网管外表面涂覆中空纤维膜结构。液体通道内流动有溴化锂溶液。该系统使用溴化锂溶液作为除湿吸收工质。中空纤维膜为疏水材料,膜内的溴化锂溶液在流动中不会产生泄漏,而膜外湿空气中的水蒸气可以透过中空纤维膜并被溴化锂溶液吸收。液体入口 13的内侧设置气体出口 17,液体出口 14的内侧设置气体入口 16,气体入口 16和气体出口 17之间通过气体通道连接,所述气体通道内间隔交错设置数个折流板18,通过设置折流板18,增大了湿空气与中空纤维膜的接触面积,以加强传质效果。膜式除湿装置中,气体流动方向与液体流动方向相反。
[0025]所述膜式除湿装置6的气体入口16通过管道与风机i的出口连通,膜式除湿装置6的气体出口 17通过管道与引射器7的喷嘴进口连通;膜式除湿装置6的液体出口 14通过溶液栗5与再生器2的入口连通,膜式除湿装置6的液体入口 13通过管道与再生器2的出口连通。空气a在风机i的作用下被吸入膜式除湿装置6的气体通道,膜式除湿装置6采用溴化锂溶液作为液体除湿剂,空气在气体通道流动过程中,空气a中的水蒸气透过中空纤维膜并被溴化锂溶液吸收进行除湿,水蒸气由气态变为液态过程中释放热量,因此从膜式除湿装置的气体出口 17流出的空气为高温低湿的空气b。由于吸收了空气中的水分,除湿后的溴化锂溶液由浓溶液变为稀溶液。稀溶液从膜式除湿装置6的液体出口 14流出,由溶液栗5栗入再生器2,再生器2的四周壁面贴有电加热片,通过电加热片使溶液温度升高,水分挥发,溴化锂溶液由稀溶液变为浓溶液,并通过再生器2的液体出口流入膜式除湿装置6的液体入口 13,溴化锂浓溶液流回膜式除湿装置6继续进行除湿。
[0026]采用中空纤维膜可以将膜外的湿空气与膜内的溴化锂溶液选择性隔绝,避免空气悬浮杂质对除湿溶液的污染,因此该装置的风机i之前无需使用空气过滤净化装置,大大降低了清理净化装置产生的系统维护成本。
[0027]所述引射器7的喷嘴进口通过管道与膜式除湿装置6的气体出口17连通,引射器7的吸气入口通过管道与雾化器3的出口连通,引射器7的喷嘴出口通过管道与风机盘管8的入风口连通。雾化器3的入口与贮液池连通,雾化器3将贮液池4中的水雾化,膜式除湿装置6中吹出的空气进入引射器7,并在喷嘴处形成负压,将水雾吸入引射器7。水雾与空气在引射器7的混合室中充分混合接触,水雾持续蒸发并吸收热量,产生低温的湿空气c,并从引射器7的喷嘴出口排出。该过程利用水雾的蒸发吸热获取冷量,避免了传统制冷设备在制冷过程中因壁面换热产生的不可逆热损失,因此能够取得更高的制冷效果。
[0028]所述压缩制冷装置包括蒸发器9、膨胀阀10、冷凝器11和压缩机12。风机盘管8的冷却水出口与蒸发器9的冷冻水入口相连,风机盘管8的冷却水入口与蒸发器9的冷冻水出口相连,使水系统在风机盘管8与蒸发器9之间构成一套水循环。引射器7的出口通过管道与风机盘管8的入风口连通,风机盘管8的出风口通过管道与冷凝器11的冷凝翅片一端口连通。从引射器7排出的空气通过管道进入风机盘管8,与风机盘管8内的低温水进行换热。进一步降温后的空气d从风机盘管8吹出。风机盘管8内的低温水吸收空气的热量后升温并沿管道进入蒸发器9,蒸发器9吸收低温水的热量,使低温水降温并沿管道流入风机盘管8的冷却水入口。
[0029]空气d从风机盘管8排出后,吹至冷凝器,由冷凝器11的一端吹向另一端,同时吸收冷凝器散发的热量,进行等含湿量升温处理,处理后得到的空气e排向室内环境。冷凝器11的出水口通过膨胀阀10与蒸发器9的入水口连通,冷凝器11的入气口通过压缩机12与蒸发器9的出气口连通。冷凝器11内的制冷剂蒸气被吸收热量后,由气态变为液态,高温高压制冷剂通过管道和膨胀阀10流入蒸发器9内后,蒸发器9吸收的低温水的热量使制冷剂转变为制冷剂蒸气,并通过压缩机12压缩后形成高压蒸气,沿管道进入冷凝器的气体入口。即冷凝器内的制冷剂在蒸发器9内吸收从风机盘管8流出的冷冻水的热量,同时制冷剂在冷凝器内的散热被风机盘管8吹出的风吸收。
[0030]本实用新型的工作原理如下所述:空气a在风机i的作用下被吸入膜式除湿装置6的气体通道,膜式除湿装置6采用溴化锂溶液作为液体除湿剂,空气a中的水蒸气透过中空纤维膜并被溴化锂溶液吸收进行除湿,水蒸气由气态变为液态过程中释放热量,因此从膜式除湿装置的气体出口 17流出的空气为高温低湿的空气b。溶液栗5将吸收了水蒸气后的溴化锂稀溶液不断栗入再生器2进行再生,使除湿过程连续进行。空气b进入引射器7后,在喷嘴处形成负压,将水雾吸入引射器7,水雾与空气在引射器7的混合室中充分混合接触,水雾持续蒸发并吸收热量,产生低温的湿空气c,并从引射器7的喷嘴出口排出。空气dl过管道进入风机盘管8,与风机盘管8内的低温水进行换热。进一步降温后的空气d从风机盘管8吹出。空气d从风机盘管8排出后,由冷凝器11的一端吹向另一端,同时吸收冷凝器散发的热量,进行等含湿量升温处理,处理后得到的空气e排向室内环境。
【主权项】
1.一种空气引射加湿-膜式与压缩式联合除湿制冷系统,包括风机(i)、风机盘管(8)和压缩制冷装置,其特征在于:还包括膜式除湿装置(6)、雾化器(3)和引射器(7),膜式除湿装置(6)的两端分别设置液体入口(i3)和液体出口(i4),液体入口(i3)和液体出口(i4)之间连接有液体通道,液体通道外表面涂覆中空纤维膜,液体通道内流动有溴化锂溶液,液体入口(i3)的内侧设置气体出口(i7),液体出口(i4)的内侧设置气体入口(i6),气体入口(i6)和气体出口( 17)之间通过气体通道连接; 膜式除湿装置(6)的气体入口(16)与风机(i)的出口连通,膜式除湿装置(6)的气体出口(17)与引射器(7)的喷嘴进口连通,引射器(7)的吸气入口与雾化器(3)的出口连通,引射器(7)的喷嘴出口与风机盘管(8)的入风口连通,膜式除湿装置包括再生机构; 压缩制冷装置包括蒸发器(9)、膨胀阀(10)、冷凝器(11)和压缩机(12),风机盘管(8)的出风口与冷凝器(11)的冷凝翅片端口连通。2.根据权利要求1所述的空气引射加湿-膜式与压缩式联合除湿制冷系统,其特征在于:所述液体通道包括数根覆膜金属丝网管(15),覆膜金属丝网管(15)包括金属丝网管,金属丝网管外表面涂覆有中空纤维膜。3.根据权利要求1所述的空气引射加湿-膜式与压缩式联合除湿制冷系统,其特征在于:所述再生机构为再生器(2),所述膜式除湿装置(6)的液体出口(14)通过溶液栗(5)与再生器(2)的入口连通,再生器(2)的壁面贴有电加热片,膜式除湿装置(6)的液体入口(13)与再生器(2)的出口连通。4.根据权利要求1所述的空气引射加湿-膜式与压缩式联合除湿制冷系统,其特征在于:所述气体通道内间隔交错设置数个折流板(18)。5.根据权利要求1所述的空气引射加湿-膜式与压缩式联合除湿制冷系统,其特征在于:雾化器(3)的入口与贮液池(4)连通,雾化器(3)将贮液池(4)中的水雾化。6.根据权利要求1所述的空气引射加湿-膜式与压缩式联合除湿制冷系统,其特征在于:所述风机盘管(8)的冷却水出口与蒸发器(9)的冷冻水入口相连,风机盘管(8)的冷却水入口与蒸发器(9)的冷冻水出口相连,冷凝器(11)的出水口通过膨胀阀(10)与蒸发器(9)的入水口连通,冷凝器(11)的入气口通过压缩机(12)与蒸发器(9)的出气口连通。
【文档编号】f24f5/00gk205641294sq201620262598
【公开日】2016年10月12日
【申请日】2016年3月31日
【发明人】赵健, 张雯, 梅宁, 张继
【申请人】中国海洋大学